Network and information security

This content is an analyzed version of Sakib Mahmud's personal notes, generated using GPT-5 and OpenAI's agentic search tools. To support NU CSE students, please consider contributing to the repository: https://github.com/Sigmakib2/Nu-CSE-Notes

1. Introduction

- Define cryptography
- Computer network security, network security, internet security
- Wireless network components and their purpose
- Cryptography as a security tool
- Network security definition
- Network security model (draw/explain)
- Types of security services
- Types of attacks (on plaintext/message, security attack definitions, examples)
- Plaintext → ciphertext conversion
- Active vs. passive attacks
- Traditional methods for network security
- OSI security model
- Data security & OSI security services
- Threat vs. attack
- Three dimensions of cryptography
- Information security & CIA triad
- Remote access technologies and vulnerabilities
- Accessibility in information security
- E-commerce security

2. Traditional Symmetric-Key Ciphers

- Encryption definition
- Symmetric cipher model
- Cryptanalysis and brute force attacks
- Types of cryptanalysis attacks (with diagrams)
- Attacks on conventional encryption scheme
- Principles of public key cryptography
- Public vs. private key cryptography comparison
- Monoalphabetic vs. polyalphabetic cipher
- Unconditionally secure vs. computationally secure cipher
- Plaintext → ciphertext conversion
- Transposition cipher
- Playfair cipher rules/examples

- Applications of public key cryptosystem
- AAA (Authentication, Authorization, Accounting)
- Playfair cipher example with keyword
- Middle-man attack

3. Modern Symmetric-Key Ciphers

- Block cipher
- Block cipher modes & convenience
- Block vs. stream cipher
- Modes using encryption only vs. both encryption & decryption
- One-time pad
- · Confusion and diffusion
- Feistel cipher (operations, structure, use in DES)
- Steganography
- Cipher feedback model

4. Data Encryption Standard (DES)

- Definition & features of DES
- General DES encryption process with diagram
- Merits & demerits of DES
- Strength of DES
- Single round DES architecture
- Triple encryption (3DES)
- Why middle portion of triple DES is decryption

5. Advanced Encryption Standard (AES)

- AES evaluation criteria (NIST)
- Features of AES
- Rijndael vs. AES
- AES decryption vs. equivalent inverse cipher
- AES vs. DES
- AES encryption & decryption structure

6. Asymmetric-Key Cryptography

- Meaning of asymmetric key
- Symmetric vs. asymmetric cipher model
- Public key vs. conventional encryption
- Symmetric vs. asymmetric techniques (differences)
- Link vs. end-to-end encryption
- Advantages & disadvantages of symmetric/asymmetric encryption
- RSA algorithm (encryption/decryption, with examples)

- Elliptic Curve Cryptography (ECC)
- Attacks on RSA & responses
- Public key cryptography for encryption & authentication
- Requirements for a secure public key cryptosystem
- Public key algorithms & diagrams

7. Message Integrity & Authentication

- Message Authentication (MAC)
- Classes of authentication functions
- Secure use of conventional encryption
- Requirements for message authentication
- MD5 vs. SHA comparison
- MD5 algorithm in detail vs. SHA-1
- Approaches to message authentication
- Hash function & SHA-512 logic
- Secure algorithms
- Digital signature for authentication

8. Cryptographic Hash Functions

- Hash function & requirements
- Weak vs. strong collision resistance
- MAC vs. hash function
- Role of compression function
- Structure of secure hash function
- Block cipher modes of operation

9. Key Management

- Public key distribution schemes
- Kerberos & Kerberos V4
- Keyed cryptography & key types
- Key Distribution Center (KDC)
- Public Key Infrastructure (PKI) & necessity
- Session key vs. master key
- Man-in-the-middle attack
- Certificate revocation
- X.509 certificate contents & revocation lists
- Purpose of X.509 standard
- Applications of IP security
- Kerberos requirements

10. Digital Signature

- Definition of digital signature
- Requirements for digital signature
- · Properties of digital signatures
- DSA algorithm
- Digital Signature Standard (DSS)
- Direct vs. arbitrated signatures
- RSA for digital signatures
- Digital signature procedure & diagrams
- RSA vs. DSA
- RSA digital signature scheme

11. Entity Authentication

- Password concerns (3 main issues)
- Social engineering attack on password
- Classification of password attacks

12. Application Layer Security (PGP & S/MIME)

- PGP definition
- MIME attack on Diffie-Hellman
- MIME definition & SMTP limitations
- · E-mail compatibility in PGP

13. Transport Layer Security (SSL & TLS)

- Diffie-Hellman key exchange algorithm
- SSL algorithm & sockets
- Benefits of SSL
- Diffie-Hellman key exchange examples (numerical)
- SSL handshake protocol
- SSL connection state parameters
- SSH protocol

14. Network Layer Security (IPSec)

- Security Association (SA)
- IPSec ESP format
- IPSec applications & benefits
- Tunnel mode vs. transport mode
- IPSec protocol for authentication & integrity

15. System Security

• Intrusion & intrusion detection methods

- Firewall (definition, merits, demerits, limitations)
- Worms & digital immune system
- Multiple firewalls in corporations
- Router security

16. Random Number Generator

• Pseudorandom generators (definition, example, working)

17. Secured Electronic Transaction (SET)

- Definition & features of SET
- Steps of SET transaction

18. Encipherment Using Modern Symmetric Ciphers

• Weakness of Electronic Code Book (ECB) mode

19. Web Security

- Sandbox & sandbox environments
- Benefits of sandboxing
- Intruder in network security
- DoS & DDoS attacks
- VPN & network security policy/management

20. Short Notes

- S/MIME
- Email Security
- ESP
- Steganography
- ECC
- Digital Immune System
- Diffie-Hellman key exchange
- Stream vs. Block cipher
- DSS
- Security attacks
- UNIX password scheme
- SSL
- Hash function
- IPSec ESP format
- Cryptanalysis
- Differential cryptanalysis
- PGP

- SET
- Feistel cipher
- RC4 algorithm
- PRNG
- Wire pool
- X.509 architecture
- PKI
- Generic encryption
- S-Box
- 9-Box

Abbreviations Found in the Syllabus

- AAA Authentication, Authorization, Accounting
- AES Advanced Encryption Standard
- CIA Confidentiality, Integrity, Availability (Triad)
- CRL Certificate Revocation List
- DES Data Encryption Standard
- **DDoS** Distributed Denial of Service
- DSS Digital Signature Standard
- DSA Digital Signature Algorithm
- **ECC** Elliptic Curve Cryptography
- ECB Electronic Code Book (mode of operation)
- **ESP** Encapsulating Security Payload (in IPSec)
- IPSec Internet Protocol Security
- **KDC** Key Distribution Center
- MAC Message Authentication Code
- MD5 Message Digest 5
- MIME Multipurpose Internet Mail Extensions
- OSI Open Systems Interconnection
- **PGP** Pretty Good Privacy
- **PKI** Public Key Infrastructure
- PRNG Pseudo Random Number Generator
- RSA Rivest, Shamir, Adleman (asymmetric algorithm)
- **SET** Secure Electronic Transaction
- SHA Secure Hash Algorithm
- **S/MIME** Secure/Multipurpose Internet Mail Extensions
- SMTP Simple Mail Transfer Protocol
- SSH Secure Shell
- SSL Secure Socket Layer
- TLS Transport Layer Security
- VPN Virtual Private Network
- X.509 ITU-T standard for PKI certificates

□ Near-Relevant Abbreviations (not in Syllabus but important for prep)

- 2FA Two Factor Authentication
- AES-CTR / CBC / CFB / OFB AES modes (Counter, Cipher Block Chaining, Cipher Feedback, Output Feedback)
- CA Certificate Authority
- CSR Certificate Signing Request
- **DH** Diffie-Hellman
- **DoS** Denial of Service
- HMAC Hash-based Message Authentication Code
- IDS Intrusion Detection System
- **IPS** Intrusion Prevention System
- MITM Man in the Middle (attack)
- OTP One-Time Pad / One-Time Password (context dependent)
- PBKDF2 Password-Based Key Derivation Function 2
- **RFC** Request For Comments (IETF standard documents)
- SSL/TLS Handshake Protocol exchange steps for secure connection
- WEP Wired Equivalent Privacy (old Wi-Fi security)
- WPA / WPA2 / WPA3 Wi-Fi Protected Access versions
- HTTPS Hyper Text Transfer Protocol Secure
- DNSSEC Domain Name System Security Extensions
- IP Internet Protocol
- URL Uniform Resource Locator

Topic 1: Introduction (Detailed Notes + Google Search as Backup)

1. Cryptography

Cryptography is the practice and study of securing communication so that only intended parties can understand the message. It transforms readable data (**plaintext**) into unreadable form (**ciphertext**) using encryption algorithms and secret keys.

- **Purpose:** Protect confidentiality, integrity, authenticity, and non-repudiation.
- **Encryption:** Process of converting plaintext → ciphertext.
- **Decryption:** Reverse process using a secret key.
- **Uses:** Online banking, e-commerce, secure emails, VPNs.
- **Example:** Caesar Cipher shifts letters to hide meaning.

2. Computer Network Security / Network Security / Internet Security

- Computer Network Security: Ensures protection of transmitted data from hackers, viruses, unauthorized access. Example: firewall protection on office LAN.
- **Network Security:** A broader discipline that involves securing the entire network infrastructure (routers, switches, servers). Includes policies, tools, and monitoring systems.
- **Internet Security:** Specifically addresses threats originating from the Internet (phishing, DoS/DDoS, malware). Tools: antivirus, SSL/TLS for websites, intrusion detection.

3. Wireless Network Components and Purpose

Wireless networks remove physical cables and provide mobility, but this increases vulnerability.

- Access Point (AP): Connects wireless clients to the wired network.
- Wireless Clients: Laptops, smartphones connecting via Wi-Fi.
- Authentication Server: Manages who can connect.
- Router/Firewall: Provides routing and protects traffic.
- **Purpose:** Provide flexible, mobile connectivity. **Vulnerability:** Prone to eavesdropping, unauthorized access if weak encryption is used (e.g., WEP).

4. Cryptography as a Security Tool

Cryptography ensures:

- Confidentiality: Only authorized parties read the message.
- Integrity: Prevent unauthorized modification.
- Authentication: Verifies identity of sender/receiver.
- Non-repudiation: Prevents denial of sending a message.
- **Application:** E-commerce (credit card safety), email security, digital signatures, VPN tunnels. Without cryptography, secure communication over open networks (like the Internet) would be impossible.

5. Network Security Definition

Network security is the practice of protecting a network and its resources from threats such as unauthorized access, modification, or denial of service. It includes hardware (firewalls, IDS/IPS), software (antivirus, authentication tools), and administrative policies.

6. Network Security Model

A conceptual framework showing how security services, mechanisms, and attacks fit together:

• Sender → Encryption → Transmission Channel → Decryption → Receiver

- **Security Services:** Confidentiality, authentication, integrity.
- Security Mechanisms: Cryptography, firewalls, MACs, hash functions.
- **Attacks:** Active (altering) and Passive (eavesdropping). This model helps visualize how data is protected during communication.

7. Types of Security Services

- Confidentiality: Prevent unauthorized access.
- Integrity: Prevent unauthorized modification.
- Authentication: Verify source/destination identity.
- Non-repudiation: Prevent sender from denying transmission.
- Access Control: Limit access to resources.
- Availability: Ensure system/data is available when needed. These services form the backbone of secure systems and are supported by cryptography and protocols.

8. Types of Security Attacks

- **Passive:** Only monitoring/reading data without altering (e.g., traffic analysis, packet sniffing). Threatens confidentiality.
- **Active:** Modification, fabrication, or disruption of messages (e.g., DoS, man-in-the-middle, replay attacks). Threatens integrity and availability. **Example:**
- Passive → Hacker intercepts your Wi-Fi traffic.
- Active → Hacker modifies the packets and injects false data.

9. Plaintext → Ciphertext Conversion

The process of encryption converts **plaintext (readable)** into **ciphertext (unreadable)** using an algorithm + key.

- **Example:** Caesar Cipher shifting letters: "HELLO" → "KHOOR".
- **Modern Example:** AES encryption with a 128-bit key. Conversion ensures even if intercepted, data cannot be understood without the decryption key.

10. Active vs. Passive Attacks

- **Active Attacks:** Modify data streams, create false data. Examples: DoS, session hijacking, message modification.
- Passive Attacks: Only observe or monitor. Examples: traffic analysis, eavesdropping.
- Key Difference: Passive affects confidentiality only, Active affects integrity & availability too.

11. Traditional Methods for Network Security

Before modern cryptography:

- Passwords & User IDs Basic access control.
- Firewalls First line of defense, blocking unwanted traffic.
- Antivirus Software Protect against malware.
- **Physical Security** Locking access to devices. These were limited, as they didn't protect against sophisticated Internet-based attacks.

12. OSI Security Model

- Security services (authentication, integrity, confidentiality) are mapped to OSI layers.
- Goal: Provide a standard framework.
- Example: Layer 3 (Network) may use IPSec for confidentiality, Layer 4 (Transport) may use SSL/TLS for authentication and encryption.

13. Data Security & OSI Security Services

- Data Security: Protects data from unauthorized access, modification, loss.
- OSI Security Services:
 - Authentication
 - Access Control
 - Data Confidentiality
 - Data Integrity
 - Non-repudiation

14. Threat vs. Attack

- Threat: Potential event that can exploit vulnerability (possibility).
- **Attack:** Actual attempt to exploit a vulnerability (execution). **Example:** A weak password is a **threat**. A hacker exploiting it is an **attack**.

15. Three Dimensions of Cryptography

- Type of Operation: Substitution, Transposition, Product cipher.
- Number of Keys: Symmetric (1 key), Asymmetric (2 keys).
- **Processing of Plaintext:** Block ciphers (chunks of data), Stream ciphers (bit by bit). This helps classify cryptographic algorithms.

16. Information Security

- Encompasses all security measures for protecting data in all forms (digital, physical, paper-based).
- **Goal:** Protect Confidentiality, Integrity, Availability (CIA).
- Covers people, processes, and technology.

17. CIA Triad

- Confidentiality: Data secrecy.
- Integrity: Data accuracy and trustworthiness.
- Availability: Ensuring access when needed. Forms the core principle of security policies worldwide.

18. Remote Access Technologies

- Allow employees to connect remotely to secure internal systems.
- Examples: VPN, SSH, RDP.
- Essential for business continuity, but needs encryption and authentication.

19. Vulnerabilities in Remote Access

- Weak authentication (password reuse, weak keys).
- Poorly configured VPN.
- Lack of encryption leading to MITM attacks.
- Malware on remote device can compromise entire network.

20. Accessibility in Information Security

- Balancing security controls with ease of access.
- Example: Two-factor authentication improves security but may reduce usability.
- Related to availability in the CIA triad.

21. Security for E-commerce

- Uses multiple technologies to protect online transactions.
- Encryption (SSL/TLS): Secures communication.
- **Digital Signatures:** Verify authenticity.
- **SET Protocol:** Provides secure card transactions.
- Firewalls & IDS: Block external attacks.

Topic 2: Traditional Symmetric-Key Ciphers

1. Define Encryption

Encryption is the process of converting **plaintext** (readable message) into **ciphertext** (unreadable form) using an algorithm and a secret key. It prevents unauthorized access during data transmission or storage.

- Types of encryption:
 - Symmetric encryption: Same key for encryption and decryption. Example: DES, AES.
 - Asymmetric encryption: Public and private keys. Example: RSA.
- Goal: Ensure confidentiality and integrity.

2. Symmetric Cipher Model

A symmetric cipher model uses a **single secret key** for both encryption and decryption.

- Ingredients:
 - Plaintext: Original data.
 - **Encryption Algorithm:** Performs substitutions and transformations.
 - **Secret Key:** Shared by sender and receiver.
 - Ciphertext: Output after encryption.
 - Decryption Algorithm: Uses the same secret key to convert ciphertext back to plaintext.
- Weakness: Key distribution is difficult.

3. Cryptanalysis and Brute Force Attacks

• **Cryptanalysis:** Techniques for breaking ciphers by exploiting weaknesses in algorithms (e.g., frequency analysis).

- Brute Force Attack: Trying all possible keys until the correct one is found.
 - For a key of length *n bits*, brute force requires (2^n) attempts in the worst case.
 - Example: A 56-bit DES key → (2^{56}) ≈ 72 quadrillion possibilities.

4. Brute Force Attack & Types of Cryptanalysis Attacks

- Brute Force: Exhaustively trying all keys until the message is decrypted.
- Types of Cryptanalysis Attacks:
 - **Ciphertext-only attack:** Only ciphertext is available.
 - **Known-plaintext attack:** Attacker has both plaintext and its ciphertext.
 - Chosen-plaintext attack: Attacker can encrypt chosen plaintexts.
 - **Chosen-ciphertext attack:** Attacker can decrypt chosen ciphertexts.
- Example: DES can be brute-forced in hours using modern computing power.

5. Approaches to Attack a Conventional Encryption Scheme

- Cryptanalysis: Using mathematical weaknesses.
- **Brute force:** Trying every possible key.
- Hybrid attacks: Combination of cryptanalysis and brute force.
- Social engineering: Attacking human factors (e.g., tricking someone to reveal the key).

Google Search

6. Principles of Public Key Cryptography (Note: appears here though related to Topic 6)

- Relies on **two keys:** Public (encryption) and Private (decryption).
- Based on hard mathematical problems (e.g., factoring large numbers, elliptic curves).
- Ensures:
 - Confidentiality
 - Authentication
 - Non-repudiation
 - Digital signatures
- Example: RSA, ECC.

7. Public vs. Private Key Cryptography Comparison

- Private (Symmetric): Same key, fast, efficient for bulk data. Weakness: key distribution.
- Public (Asymmetric): Different keys, slower, secure key exchange, supports digital signatures.
- **Real-world usage:** Hybrid systems (e.g., SSL/TLS uses both).

8. Monoalphabetic vs. Polyalphabetic Cipher

- **Monoalphabetic Cipher:** Each letter of plaintext is always mapped to the same ciphertext letter. Example: Caesar cipher. Weak to frequency analysis.
- **Polyalphabetic Cipher:** Uses multiple substitution alphabets. Example: Vigenère cipher. More secure because it masks frequency.

9. Unconditionally Secure Cipher vs. Computationally Secure Cipher

- **Unconditionally Secure Cipher:** Cannot be broken even with infinite computing power. Example: One-Time Pad (OTP).
- **Computationally Secure Cipher:** Cannot be broken with current technology within a reasonable time (e.g., AES).

10. Plaintext → Ciphertext Conversion (Symmetric Example)

- Use of substitution/transposition methods.
- Example: Caesar cipher shifts plaintext letters.
- More advanced: AES converts blocks of data (128 bits) into ciphertext.

11. Transposition Cipher

Rearranges the order of characters without changing them.

- Example: **HELLO** → using a columnar transposition → "HLOEL".
- Different from substitution ciphers, which replace letters.

12. Playfair Cipher (Rules)

- Uses a 5x5 matrix of alphabets (I & J treated as one).
- Encryption rules:
 - 1. Same row \rightarrow replace with letter to the right.

- 2. Same column → replace with letter below.
- 3. Different row/column → form rectangle, replace with opposite corners.
- Example: Plaintext "HELLO" → Ciphertext depends on chosen key.

13. Application of Public Key Cryptosystem

- Secure email (PGP)
- Digital signatures
- Key exchange in SSL/TLS
- Secure payment (SET protocol)
- Authentication in e-commerce

14. AAA (Authentication, Authorization, Accounting)

- **Authentication:** Verifying user identity (password, biometrics).
- Authorization: Granting access rights to resources.
- Accounting: Tracking user activities for audit.
- Widely used in network access control (e.g., RADIUS).

15. Playfair Cipher Example

Encrypt "The key is hidden under the door" using keyword "guidance".

- Key builds 5x5 matrix.
- · Apply Playfair rules.
- Each digraph (pair of letters) is encrypted separately.
- Exam Note: Always prepare at least one solved example.

16. Middle-Man Attack (Man-in-the-Middle, MITM)

An attacker secretly intercepts and possibly alters communication between two parties.

- **Example:** Attacker sits between Alice and Bob during key exchange and relays messages.
- **Result:** Both believe they are communicating securely, but attacker controls the data.
- Prevention: Use of strong authentication (digital certificates, PKI).

Google Search

Topic 3: Modern Symmetric-Key Ciphers

1. What is Block Cipher?

A **block cipher** is an encryption method that processes data in **fixed-size blocks** (e.g., 64-bit or 128-bit). Each block of plaintext is transformed into a block of ciphertext using the same secret key.

- Examples: DES (64-bit blocks), AES (128-bit blocks).
- **Strengths:** Strong security, diffusion of plaintext over ciphertext.
- Weakness: If the same block repeats, ciphertext may also repeat (unless a mode of operation is used).
- Usage: File encryption, SSL/TLS, VPNs.

2. Why are Block Cipher Modes Convenient?

Block ciphers must be used in **modes of operation** to handle large messages securely.

Modes:

- **ECB (Electronic Code Book):** Each block encrypted independently (weak due to repetition patterns).
- CBC (Cipher Block Chaining): Each plaintext block XORed with previous ciphertext → more secure.
- CFB (Cipher Feedback): Converts block cipher into stream cipher.
- o OFB (Output Feedback): Similar to CFB but independent of plaintext.
- o CTR (Counter Mode): Uses counters for encryption, allows parallel processing.
- Convenience: Handle arbitrary message sizes, increase security, prevent pattern leakage.

3. Block Cipher vs. Stream Cipher

- Block Cipher: Encrypts data in fixed blocks. Slower but strong. Example: AES, DES.
- **Stream Cipher:** Encrypts one bit/byte at a time using a keystream. Faster, useful for real-time data. Example: RC4.

Difference:

- Block: Deterministic on same block input (unless mode used).
- o Stream: Produces variable keystream, good for continuous data streams (video/audio).
- **Security:** Block ciphers generally stronger if used with proper modes.

O Google Search

4. Why Some Block Cipher Modes Use Only Encryption While Others Use Both Encryption & Decryption?

- **Encryption-Only Modes:** CTR, OFB generate keystream independent of plaintext. Decryption is just reapplying encryption keystream.
- **Encryption & Decryption Modes:** CBC, CFB require different handling for decryption since ciphertext chaining must be reversed.
- **Reason:** Modes that generate independent keystream (CTR, OFB) can reuse encryption for both processes.

5. Explain the One-Time Pad with Example

The One-Time Pad (OTP) is the only known unbreakable encryption method.

- Process:
 - Generate a random key as long as the plaintext.
 - XOR plaintext with key → ciphertext.
 - Decryption is reversing with same key.
- Properties:
 - **Unconditional Security:** Cannot be broken even with infinite computing power.
 - Requirements: Key must be truly random, as long as the message, never reused.
- **Example:** Plaintext: HELLO → Binary → XOR with random key → Ciphertext.

6. Confusion and Diffusion

- **Confusion:** Hides the relationship between plaintext, ciphertext, and key. Achieved through complex substitutions.
- **Diffusion:** Spreads the influence of one plaintext bit over many ciphertext bits. Achieved through permutations and mixing.
- Purpose: Together, they strengthen ciphers by making cryptanalysis difficult.
- **Example:** DES uses substitution boxes (confusion) and permutations (diffusion).

7. Feistel Cipher

A **Feistel cipher** is a structure used in many block ciphers (e.g., DES).

- Operation:
 - Divide plaintext block into two halves (L, R).

- Process rounds: $(L_{i+1} = R_i)$, $(R_{i+1} = L_i \setminus F(R_i, K_i))$.
- Swap halves and repeat for multiple rounds.

Advantages:

- Same structure used for both encryption & decryption.
- Strong if round function F is secure.
- Examples: DES, Blowfish.

8. Steganography & Feistel Cipher Parameters

- **Steganography:** Hiding messages inside other digital media (images, audio, video) so presence of the message is hidden.
 - Example: Embedding a secret text into an image's least significant bits.

Feistel Parameters:

- Block size
- Key size
- Number of rounds
- Round function F design choices These choices determine the **strength and efficiency** of the cipher.

9. Cipher Feedback (CFB) Model of Operation

CFB turns a block cipher into a **self-synchronizing stream cipher**.

- Process:
 - Encrypt IV (Initialization Vector) → take part of output → XOR with plaintext → ciphertext.
 - Ciphertext also feeds back into encryption for next block.
- Advantage: Can process smaller units (bits/bytes) instead of large blocks.
- **Use Case:** Real-time data encryption (secure communication channels).

Topic 4: Data Encryption Standard (DES)

1. What is DES? What are its Features?

DES (Data Encryption Standard) is a **symmetric-key block cipher** developed by IBM in the 1970s and adopted by NIST in 1977 as a federal standard.

- Block Size: 64 bits.
- Key Size: 56-bit effective key (though originally 64-bit with 8 parity bits).
- Rounds: 16 Feistel rounds.
- **Structure:** Based on the Feistel network (substitution + permutation).
- Features:
 - Symmetric (same key for encryption/decryption).
 - Uses S-boxes (confusion) and permutations (diffusion).
 - Widely used in early banking and secure communications.
- **Limitation:** 56-bit key is too short today → vulnerable to brute-force attacks.

2. General DES Encryption Process with Diagram (Merits & Demerits)

Process:

- 1. **Initial Permutation (IP):** Rearranges bits of plaintext.
- 2. Divide into two halves (L, R).
- 3. 16 Rounds of Feistel operations:
 - Expansion (32 → 48 bits),
 - o XOR with subkey,
 - Substitution using S-boxes,
 - Permutation.
- 4. Swap halves each round.
- 5. Final Permutation (FP): Produces ciphertext.

Merits:

- Strong diffusion and confusion.
- Resistant to many cryptanalysis methods when designed.

Demerits:

- Small key size (56 bits) → brute-forceable.
- Slower compared to modern algorithms (AES).
- Obsolete for modern security needs.

@ Google Search

3. Strength of DES Algorithm

- Strengths:
 - Resistant to differential & linear cryptanalysis (with full 16 rounds).
 - Well-tested for decades.
- Weaknesses:
 - **Key size (56-bit):** Too short, brute force possible in hours with modern hardware.
 - Susceptible to side-channel attacks (timing, power analysis).
- Historical Note: In 1998, the EFF machine broke DES in less than 3 days.

4. Single Round DES Architecture

A single DES round consists of:

- 1. Input: Left half (L), Right half (R).
- 2. Expansion (E): Expands 32-bit R into 48 bits.
- 3. **Key Mixing:** XOR with 48-bit round subkey.
- 4. **Substitution (S-boxes):** 48 bits \rightarrow 32 bits.
- 5. Permutation (P-box): Rearranges bits.
- 6. **Output:** $(L_{i+1} = R_i), (R_{i+1} = L_i \setminus plus f(R_i, K_i)).$

Note: 16 such rounds strengthen the cipher.

Google Search

5. What is Triple DES (3DES)? How Many Keys Are Used?

Triple DES (3DES): An enhancement to DES to improve security by applying DES **three times**.

- **Operation:** Encrypt → Decrypt → Encrypt (EDE).
- Keys Used:
 - Two-key 3DES: Uses 2 keys (K1, K2).
 - Three-key 3DES: Uses 3 independent keys (K1, K2, K3).
- Effective Key Size:
 - o Two-key: 112 bits.
 - Three-key: 168 bits.
- **Use Cases:** Banking industry (ATMs, SWIFT).

6. Why is the Middle Portion of 3DES Decryption Instead of Encryption?

- In **3DES EDE mode**, the middle step is **decryption** for compatibility with single DES systems.
- Reason:
 - If all 3 keys are the same (K1 = K2 = K3), 3DES reduces to single DES.
 - Ensures backward compatibility with legacy DES systems.
- Operation:
 - Ciphertext = (E_{K1}(D_{K2}(E_{K3}(Plaintext)))).
- Benefit: Stronger security while maintaining DES compatibility.

Topic 5: Advanced Encryption Standard (AES)

1. Final Set of Criteria Used by NIST to Evaluate Candidate AES Cipher

In 1997, NIST initiated the AES competition to replace DES. The evaluation process considered multiple criteria:

- Security: Resistance against known attacks (brute force, differential, linear cryptanalysis).
- **Cost:** Efficient implementation in hardware and software.
- Algorithm & Key Size Flexibility: Support for 128, 192, and 256-bit keys.
- Performance: High speed in encryption/decryption across different platforms (smart cards to servers).
- **Simplicity:** Easy to understand and implement without hidden weaknesses.
- International Acceptance: Not controlled by patents. Winner: Rijndael algorithm → became AES in 2001.

2. Salient Features of AES

- Block Size: Fixed 128 bits.
- **Key Sizes:** 128, 192, or 256 bits.
- **Structure:** Substitution–Permutation network, not Feistel.
- Rounds:
 - 10 rounds (128-bit key).
 - 12 rounds (192-bit key).
 - 14 rounds (256-bit key).
- Operations per Round:

- SubBytes (byte substitution using S-box).
- ShiftRows (row-wise permutation).
- o MixColumns (column mixing for diffusion).
- AddRoundKey (XOR with round key).
- Security: Resistant against all practical attacks.
- Speed: Very fast in software and hardware, widely adopted globally.

3. Differences Between Rijndael and AES

- Rijndael: Original algorithm submitted by Belgian cryptographers Joan Daemen and Vincent Rijmen.
 - o Variable block sizes: 128, 192, 256 bits.
 - o Variable key sizes: 128, 192, 256 bits.
- AES (Final Standard):
 - Restricted to **128-bit block size** only.
 - o Key sizes: 128, 192, 256 bits.
- **Summary:** AES is a restricted version of Rijndael chosen by NIST.

4. Difference Between AES Decryption Algorithm and Equivalent Inverse Cipher

- AES Decryption: Applies reverse order of operations (InvShiftRows → InvSubBytes → AddRoundKey →
 InvMixColumns).
- **Equivalent Inverse Cipher:** A modified form where decryption is performed using the same structure as encryption but with pre-computed round keys.
- **Purpose:** Simplifies hardware implementation by allowing the same design for both encryption and decryption.

5. Differentiate Between AES and DES Algorithm

- Algorithm Type:
 - o DES: Feistel network (16 rounds).
 - AES: Substitution–Permutation network.
- Block Size:
 - DES: 64-bit.
 - o AES: 128-bit.

Key Size:

- o DES: 56-bit effective.
- o AES: 128, 192, or 256-bit.

Security:

- DES: Weak due to small key size.
- AES: Strong, no practical attacks.

Speed:

• AES is faster and more efficient in both hardware and software.

Adoption:

- DES is obsolete.
- AES is the current global standard (used in SSL/TLS, VPNs, Wi-Fi, etc.).

6. Detailed Structure of AES Encryption and Decryption

AES Encryption Steps:

- 1. Initial Round: AddRoundKey (XOR plaintext with first round key).
- 2. Main Rounds (9, 11, or 13 depending on key size):
 - SubBytes (non-linear substitution using S-box).
 - o ShiftRows (shifts rows left for diffusion).
 - o MixColumns (mixes data across columns).
 - AddRoundKey (XOR with subkey).
- 3. **Final Round:** SubBytes → ShiftRows → AddRoundKey (no MixColumns).

AES Decryption Steps: Reverse process: InvShiftRows, InvSubBytes, InvMixColumns, AddRoundKey.

Strength: Strong resistance against all known attacks, fast and scalable.

Topic 6: Asymmetric-Key Cryptography

1. What do you mean by Asymmetric Key?

- **Definition:** Asymmetric key cryptography (public-key cryptography) uses a pair of keys:
 - **Public Key:** Shared openly, used for encryption.
 - o Private Key: Kept secret, used for decryption.

- Idea: What one key encrypts, only the other key can decrypt.
- Advantages: Solves the key distribution problem in symmetric cryptography.
- **Examples:** RSA, Elliptic Curve Cryptography (ECC), Diffie–Hellman.

2. Differences Between Symmetric and Asymmetric Cipher Model

• Symmetric Cipher Model:

- One shared secret key.
- o Faster, efficient for bulk data.
- Problem: Key distribution is hard.

Asymmetric Cipher Model:

- Two keys (public + private).
- Slower but solves key distribution issue.
- Enables digital signatures and authentication.

3. Public Key vs. Conventional Encryption

• Public Key (Asymmetric):

- o Different keys for encryption/decryption.
- Enables digital signatures.
- o Example: RSA.

• Conventional Encryption (Symmetric):

- Same key used for both.
- Faster but insecure key sharing.
- **Usage:** Often combined (Hybrid Cryptosystem):
 - Public key → secure key exchange.
 - Symmetric key → actual data encryption.

4. Symmetric vs. Asymmetric Encryption Techniques

• Symmetric:

- One secret key.
- Very fast, less computation.

Examples: DES, AES.

• Asymmetric:

- Two keys (public + private).
- Slower due to heavy math (large prime factorization, elliptic curves).
- Examples: RSA, ECC.
- Practical Use: Symmetric used for bulk, Asymmetric used for secure key exchange.

5. Link Encryption vs. End-to-End Encryption

• Link Encryption:

- Data encrypted at each hop (router, switch).
- Each device decrypts & re-encrypts before forwarding.
- Protects data while in transit but intermediate devices see plaintext.

End-to-End Encryption:

- o Data encrypted at sender and decrypted only at receiver.
- Protects against eavesdropping even at intermediate devices.

• Example:

- Link encryption: WAN between routers.
- End-to-end encryption: WhatsApp, TLS.

6. Advantages and Disadvantages of Symmetric & Asymmetric Encryption

• Symmetric:

- Faster, requires less computational power.
- X Key distribution problem, not scalable.

Asymmetric:

- ∘ ✓ Solves key distribution, enables digital signatures.
- X Slower, resource-intensive.
- **Combination:** Real-world systems use both for balance (e.g., HTTPS).

7. RSA Algorithm (Encryption & Decryption)

• Steps:

- 1. Choose two large primes p, q.
- 2. Compute ($n = p \times q$).
- 3. Compute Euler's totient: $(\phi(n) = (p-1)(q-1))$.
- 4. Choose public exponent e (coprime with (\phi(n))).
- 5. Compute private key d such that (e \times d \equiv 1 \ (\text{mod} \phi(n))).
- 6. Public Key = (e, n), Private Key = (d, n).
- Encryption: (C = M^e \mod n).
- Decryption: (M = C^d \mod n).
- **Security Basis:** Factoring large n into primes is computationally hard.

8. Elliptic Curve Cryptography (ECC)

- **Definition:** Public key cryptography based on algebraic structures of elliptic curves over finite fields.
- Advantage: Provides same security as RSA but with much smaller key sizes.
 - Example: 256-bit ECC ≈ 3072-bit RSA in strength.
- **Used in:** Mobile devices, IoT, SSL/TLS, cryptocurrencies.
- **Example Curve:** $(y^2 = x^3 + ax + b)$.

9. Security of RSA & Possible Attacks

- Attacks:
 - Mathematical Attack: Factoring modulus n.
 - **Brute Force:** Trying keys (impractical with large n).
 - **Timing Attack:** Observing computation time to reveal private key.
 - Chosen Ciphertext Attack: Manipulating ciphertexts.
- RSA Defense:
 - Use large key sizes (≥2048 bits).
 - o Implement secure padding (OAEP).
 - Use constant-time algorithms to prevent side-channel leaks.

10. Perform RSA with Given Values (p=7, q=11, e=13, M=8)

- **Step 1:** $n = p \times q = 7 \times 11 = 77$.
- **Step 2:** $\varphi(n) = (p-1)(q-1) = 6 \times 10 = 60$.

- **Step 3:** e = 13 (given). Check gcd(13, 60) = 1 → valid.
- Step 4: Find d such that (e \times d) mod 60 = 1 \rightarrow d = 37.
- **Step 5:** Public Key = (13, 77), Private Key = (37, 77).
- **Encryption:** C = M^e mod n = 8^13 mod 77 = 57.
- **Decryption:** M = $C^d \mod n = 57^37 \mod 77 = 8$. \checkmark Correctly returns original message.

11. Public Key Cryptography for Encryption & Authentication

- **Encryption:** Sender encrypts message with recipient's **public key** → only recipient's **private key** can decrypt.
- Authentication/Digital Signature: Sender signs message by encrypting hash with their private key → anyone can verify with sender's public key.
- Benefit: Provides both confidentiality and authentication simultaneously.

12. Requirements for a Secure Public Key Cryptosystem

- **Correctness:** Encryption + decryption must recover plaintext.
- Security: Based on hard mathematical problems (factoring, discrete logs).
- One-way Trapdoor Function: Easy to compute one way, hard to reverse without key.
- Practical Efficiency: Not too slow for real-world use.
- Scalability: Should support multiple users securely.

13. Public Key Algorithms (General Overview)

- **RSA:** Based on integer factorization.
- **Diffie–Hellman (DH):** Secure key exchange.
- **ECC:** Uses elliptic curves (more efficient).
- **ElGamal:** Based on discrete logarithm problem.
- Applications: Secure email (PGP), digital signatures, SSL/TLS, cryptocurrency wallets.

Topic 7: Message Integrity and Message Authentication

1. What is Message Authentication (MAC)?

- Message Authentication: The process of verifying that a message has not been altered and comes from an authentic source.
- MAC (Message Authentication Code):
 - A cryptographic checksum generated using a secret key + message.
 - Sent along with the message.
 - Receiver recomputes MAC with the same key → if equal, message is authentic.
- Goal: Protect integrity and authenticity, not confidentiality.
- Example: HMAC-SHA256 used in APIs and SSL/TLS.

2. How is Message Authentication Performed?

- Methods:
 - 1. **Using MACs:** Secret key + message → cryptographic function → MAC.
 - 2. **Using Cryptographic Hash Functions:** Message → Hash → Sent with message.
 - 3. **Using Digital Signatures:** Sender signs hash of message using private key → Receiver verifies with public key.
- Example: In SSL/TLS, HMAC is used to authenticate packets.

3. Message Authentication & Classes of Authentication Functions

- Message Authentication: Confirms that data is from an authentic sender and unaltered.
- Classes of Functions:
 - Hash Functions (without key): Provide integrity, but no authentication.
 - Message Authentication Codes (MACs): Hash + secret key → ensures authenticity + integrity.
 - **Digital Signatures:** Use public/private keys → authenticity + non-repudiation.

Google Search

4. Requirements for Secure Use of Conventional Encryption

- Secret key must remain private between sender and receiver.
- Strong encryption algorithm must be used.
- Random IVs (Initialization Vectors) for security.
- Keys must be changed frequently to prevent replay or brute force.
- Both parties must authenticate each other to avoid MITM attacks.

Google Search

5. Requirements for Message Authentication

- Integrity: Message must not be altered.
- Authentication: Must prove message comes from correct source.
- Freshness: Prevent replay attacks (timestamps, sequence numbers).
- Non-repudiation (optional): Sender cannot deny sending.
- Efficiency: Should be fast and lightweight.

6. MD5 vs SHA Algorithm (Comparison)

• MD5 (Message Digest 5):

- Output: 128-bit hash.
- Fast but insecure (collisions found).
- Used historically in checksums.

• SHA (Secure Hash Algorithm):

- Variants: SHA-1 (160-bit), SHA-2 (256, 512 bits), SHA-3.
- Stronger security than MD5.

• Comparison:

- o MD5 is faster but weak.
- o SHA-256/SHA-512 is secure and widely used in TLS, Bitcoin, PKI.

7. MD5 Algorithm in Detail & Comparison with SHA-1

• MD5 Process:

- o Input broken into 512-bit blocks.
- Each block processed through 4 rounds of non-linear functions.
- Produces a 128-bit digest.

• SHA-1 Process:

- o Similar block processing, but stronger design.
- Produces 160-bit digest.
- **Performance:** MD5 is faster, but SHA-1 is more secure.
- Current Status: Both are deprecated for modern cryptographic use due to collision vulnerabilities.

8. Approaches to Producing Message Authentication

- Message Authentication Code (MAC): Key + message → secure tag.
- Hash-based Authentication (HMAC): Hash function + key → strong MAC.
- **Digital Signatures:** Public/private key pair ensures authenticity + non-repudiation.
- **Encrypt + MAC:** Encrypt message + append authentication tag.

9. Hash Function & SHA-512 Logic Algorithm

- **Hash Function:** A one-way function mapping variable input → fixed-size output (digest).
 - o Requirements: Pre-image resistance, collision resistance, avalanche effect.

• SHA-512:

- o Input processed in 1024-bit blocks.
- Produces 512-bit hash.
- Uses 80 rounds of bitwise operations, modular additions.
- Used in SSL/TLS, digital signatures, blockchain.

10. How Does a Secure Algorithm Work?

- A secure algorithm ensures:
 - Confusion: Complex substitution hides plaintext-key relation.
 - **Diffusion:** One bit change in plaintext affects many bits in ciphertext.
 - Large Key Space: Resistant to brute-force.
 - Mathematical Hardness: Based on difficult problems (factoring, discrete logs).
- **Example:** AES is secure due to strong substitution-permutation network and large key size.

11. Digital Signature Process for Message Authentication

Process:

- 1. Sender computes hash of message.
- 2. Sender encrypts hash with their private key \rightarrow digital signature.
- 3. Receiver decrypts signature using sender's public key.
- 4. Receiver compares computed hash vs. received hash.
- Purpose: Provides authentication, integrity, non-repudiation.
- **Use Case:** Email signing, software distribution, e-commerce.

Google Search

Topic 8: Cryptographic Hash Functions

1. What is Hash Function? Mention the Requirements for Hash Function

- **Definition:** A hash function is a one-way mathematical function that takes an input of arbitrary length and produces a fixed-size output (hash/digest).
- **Purpose:** Used for integrity verification, digital signatures, password storage, and authentication.
- Requirements:
 - **Pre-image Resistance:** Hard to find input from its hash.
 - **Second Pre-image Resistance:** Hard to find a different input with the same hash.
 - Collision Resistance: Hard to find two different inputs with the same hash.
 - **Efficiency:** Should be fast and easy to compute.
 - Avalanche Effect: A small change in input → large unpredictable change in output.

2. Weak Collision Resistance vs. Strong Collision Resistance

- Weak Collision Resistance (Second Pre-image Resistance): Given a message M1, it should be computationally infeasible to find a different message M2 such that Hash(M1) = Hash(M2).
- **Strong Collision Resistance:** It should be infeasible to find **any two different messages** M1 and M2 that produce the same hash.
- Example:
 - Weak: Hard to find another password with same hash as yours.
 - Strong: Hard to find any two files with same hash.
- **Note:** Strong collision resistance is stricter and harder to achieve.

3. Differentiate Between Weak and Strong Collision Resistance

- Weak Collision Resistance: Focuses on a specific input → find another input with same hash.
- Strong Collision Resistance: Focuses on any two arbitrary inputs producing same hash.
- Comparison:
 - Weak is easier to break.
 - o Strong is more secure and required for digital signatures, certificates.

Google Search

4. Block Cipher Modes of Operation (Brief Overview)

Although mainly studied under symmetric encryption, hash functions can also be built using block cipher modes.

- ECB (Electronic Code Book): Each block encrypted independently. Weak due to repetition.
- CBC (Cipher Block Chaining): Each block XORed with previous ciphertext block. Stronger diffusion.
- **CFB (Cipher Feedback):** Converts block cipher into stream cipher.
- OFB (Output Feedback): Produces keystream independent of plaintext.
- CTR (Counter Mode): Uses counters for parallel encryption.
- Relevance to Hash: Some hash constructions are based on block ciphers (e.g., Davies-Meyer).

5. Differentiate MAC and Hash Function. Role of Compression Function in Hash Function

- MAC (Message Authentication Code):
 - Hash + Secret Key.
 - Provides both integrity & authentication.
 - Example: HMAC (Hash-based MAC).
- Hash Function:
 - o No key required.
 - Provides only integrity.
- Role of Compression Function in Hash Function:
 - Hash functions like MD5, SHA use compression functions to process fixed-size blocks (e.g., 512 bits) and compress them into smaller digests.
 - Ensures avalanche effect and collision resistance.

6. General Structure of Secure Hash Function

- Input: Message broken into fixed-size blocks (e.g., 512 bits).
- **Processing:** Each block processed through a compression function with chaining values.
- Output: Final fixed-size hash (e.g., SHA-256 = 256 bits).
- Structure Example:
 - o MD5: 128-bit digest, 64 rounds.
 - **SHA-256:** 256-bit digest, 64 rounds.
 - **SHA-512:** 512-bit digest, 80 rounds.
- Security: Depends on avalanche effect, collision resistance, and round functions.

Topic 9: Key Management

1. General Characteristics / Categories of Public Key Distribution Schemes

Key Distribution = process of securely delivering cryptographic keys between parties.

General Characteristics:

- Security: Should resist interception, modification.
- o Efficiency: Must support large networks.
- o Scalability: Work for millions of users.
- Authentication: Ensure keys come from trusted sources.

• Four Categories:

- 1. Public Announcement: User publicly shares key (insecure, prone to spoofing).
- Publicly Available Directory: Keys stored in trusted directories (vulnerable if directory is compromised).
- 3. Public Key Authority: Central authority validates keys.
- 4. **Public Key Certificates (PKI):** Keys bound to digital certificates signed by trusted Certificate Authorities (CA).

2. Kerberos (V4) and Authentication Service

- Kerberos: A network authentication protocol based on symmetric key cryptography.
- Developed: At MIT for secure login/authentication.
- Kerberos V4:
 - Uses a trusted Key Distribution Center (KDC).
 - o Issues "tickets" for authentication.
 - Users authenticate once and then use tickets for further access (SSO Single Sign-On).
- Authentication Service (AS): Validates user identity → issues Ticket Granting Ticket (TGT).
- Benefits: Prevents password transmission over the network, protects against replay attacks.

3. Concept of Keyed Cryptography & Types of Keys

Keyed Cryptography: Cryptography that requires the use of a secret key.

• Types of Keys:

- Symmetric Keys: Same key for encryption & decryption (DES, AES).
- **Asymmetric Keys:** Public key for encryption, private key for decryption (RSA, ECC).
- **Session Keys:** Temporary symmetric keys for one communication session.
- Master Keys: Long-term keys used to derive session keys.

4. Key Distribution Center (KDC)

• **Definition:** A trusted server that distributes secret keys to users.

• Functions:

- Provides **session keys** securely.
- o Reduces the number of keys each user must store.

• Process:

- User → KDC request.
- KDC issues session key encrypted with user's long-term key.
- **Used in:** Kerberos, enterprise networks.

5. Public Key Infrastructure (PKI) & Its Necessity

• **PKI:** A framework that manages digital certificates and public keys.

• Functions:

- Certificate Authority (CA) issues digital certificates.
- o Provides authentication, integrity, confidentiality, and non-repudiation.
- Without PKI: It is very difficult to trust public keys, leading to impersonation attacks.
- Applications: SSL/TLS, VPNs, digital signatures, secure email.

6. Session Key vs. Master Key

Session Key:

- Temporary key used for one communication session.
- o Provides confidentiality for that session only.
- Example: In HTTPS, session keys are negotiated via TLS handshake.

• Master Key:

- Long-term key used to generate session keys.
- o Must be kept highly secure.
- **Comparison:** Session key is short-lived (less risk if compromised), master key is long-lived.

7. Man-in-the-Middle (MITM) Attack

- **Definition:** An attacker secretly intercepts and possibly alters communication between two parties.
- **Process:** Attacker sits between sender & receiver → relays messages → both think they're communicating directly.
- **Example:** During Diffie–Hellman key exchange, attacker establishes separate keys with each party.
- **Defense:** Use authentication (digital certificates, signed keys).

8. Certificate Revocation

- Certificates may need to be **revoked** before expiry due to:
 - Compromised private key.
 - User left organization.
 - o CA misissued certificate.
- Handled by:
 - CRL (Certificate Revocation List): List of revoked certificates.
 - OCSP (Online Certificate Status Protocol): Real-time certificate validation.

9. X.509 Certificate Format & Revocation List (CRL)

- X.509: Standard for digital certificates used in PKI.
- Typical Contents:
 - Version
 - Serial Number
 - Signature Algorithm
 - Issuer (CA)
 - Validity Period
 - Subject (user, server info)
 - Public Key
- Certificate Revocation List (CRL): Contains serial numbers of revoked certificates.
- Delta CRL: Only lists certificates revoked since the last full CRL update.

10. Purpose of X.509 Standard

- Provides a standardized format for public key certificates.
- Used in SSL/TLS, secure email, VPNs.
- Ensures interoperability between different systems.
- Defines certificate chains and trust hierarchy (Root CA → Intermediate CA → End-user cert).

11. Applications of IP Security (IPSec)

- IPSec: A protocol suite for securing IP communication by authenticating and encrypting each packet.
- Applications:
 - VPNs (Virtual Private Networks).
 - Secure branch-office communication.
 - Secure email.
 - Protecting routing protocols.
- Benefits: Provides confidentiality, integrity, authentication at the network layer.

12. Requirements of Kerberos

Four main requirements defined:

- 1. **Secure Authentication:** No plaintext passwords transmitted.
- 2. Reliability: Must be available continuously.
- 3. Transparency: Users authenticate once (SSO).
- 4. **Scalability:** Must work across large distributed systems.

Topic 10: Digital Signature

1. What is Digital Signature?

- **Definition:** A digital signature is the electronic equivalent of a handwritten signature or a stamped seal.
- How it Works:
 - Sender generates a **hash** of the message.
 - Hash is **encrypted with sender's private key** → forms the digital signature.

- Receiver decrypts signature using sender's **public key** → verifies hash.
- Purpose: Provides integrity, authenticity, and non-repudiation.
- **Example:** Used in software updates, e-commerce, legal documents.

2. Requirements for a Digital Signature

A valid digital signature scheme must provide:

- 1. Authenticity: Only the signer could have generated it.
- 2. Integrity: Message must not be altered after signing.
- 3. **Non-repudiation:** Signer cannot deny signing.
- 4. **Efficiency:** Must be easy to generate and verify.
- 5. **Security:** Must be computationally infeasible to forge.

3. Properties a Digital Signature Should Have

- **Unforgeability:** Cannot be forged without the private key.
- Authenticity: Confirms the identity of sender.
- Integrity: Protects against tampering.
- Non-repudiation: Prevents denial of authorship.
- **Verifiability:** Anyone with public key can verify.
- Portability: Must be transferable and verifiable by third parties.

4. DSA Algorithm (Digital Signature Algorithm)

- DSA (1991, NIST Standard):
 - Based on modular exponentiation & discrete logarithms.
- Steps:
 - 1. Generate parameters (p, q, g).
 - 2. Generate private key (x).
 - 3. Compute public key $(y = g^x \mod p)$.
 - 4. For signing: Pick random k, compute signature pair (r, s).
 - 5. For verification: Receiver checks validity using signer's public key.
- **Output:** Digital signature = (r, s).
- **Use Case:** U.S. federal standards for secure digital signatures.

5. Digital Signature Standard (DSS)

- DSS = NIST Standard (1994): Specifies algorithms for digital signatures.
- Includes:
 - o DSA (Digital Signature Algorithm).
 - RSA-based signatures.
 - ECDSA (Elliptic Curve DSA).
- Purpose: Define secure and standardized digital signature methods for federal systems.

6. Direct vs. Arbitrated Digital Signature

- Direct Digital Signature:
 - Sender signs message directly with private key.
 - Receiver verifies with sender's public key.
 - o Simple but risks disputes if sender denies later.
- Arbitrated Digital Signature:
 - o A trusted third party (arbiter) validates and stores signatures.
 - Provides stronger non-repudiation.
- **Example:** Digital notary services use arbitrated signatures.

7. Requirements a Digital Signature Scheme Should Satisfy

- Correctness: Signature must verify correctly with public key.
- Unforgeability: Cannot forge without private key.
- Non-repudiation: Signer cannot deny.
- Efficiency: Must be practical in speed and memory.
- Security against Attacks: Must resist chosen-plaintext and chosen-message attacks.

8. RSA Digital Signature

- How it Works:
 - Sender computes hash of message.
 - Sender encrypts hash with **private key** → digital signature.
 - Receiver decrypts signature with **public key**, compares with hash.

- **Security:** Based on difficulty of factoring large integers.
- Applications: Used in SSL/TLS, email signing, blockchain.

9. Digital Signature Procedure (with Diagram)

Steps:

- 1. **Sender:** $Hash(M) \rightarrow Encrypt$ hash with private key = Signature.
- 2. **Send:** Message + Signature → Receiver.
- 3. **Receiver:** Hash(M) again → Decrypt signature with sender's public key.
- 4. **Compare:** If both match → message is authentic & unmodified. **Diagram (conceptual):**

```
Message \rightarrow Hash \rightarrow Encrypt with Private Key \rightarrow Signature Receiver: Message \rightarrow Hash \rightarrow Compare with Signature Decrypted by Public Key
```


10. RSA vs. DSA

- RSA:
 - Based on integer factorization.
 - Can be used for both encryption & signature.
 - Slower for signature generation, faster for verification.

• DSA:

- Based on discrete logarithm problem.
- Only for signatures (not encryption).
- Faster signing, slower verification.
- **Summary:** RSA = versatile, DSA = specialized for signatures.

11. RSA Digital Signature Scheme (with Diagram)

- Steps:
 - Generate RSA keys (public & private).
 - Hash message → encrypt with private key = signature.
 - Verify using public key.

• Diagram:

- **Sender:** $M \rightarrow H(M) \rightarrow Encrypt$ with d (private key).
- **Receiver:** $M \rightarrow H(M) \rightarrow Compare with Decrypt(Signature, e).$
- **Applications:** Email security, legal documents, financial transactions.

Topic 11: Entity Authentication

1. Three Main Concerns with Passwords for Authentication & Social Engineering Attack

Entity Authentication: Proving the identity of a user or system. The simplest method is using passwords, but they come with major concerns:

• Concerns with Passwords:

- 1. Weak Passwords: Users often choose simple, guessable passwords (e.g., "123456", "password").
- 2. Password Reuse: Same password used across multiple platforms increases risk.
- 3. **Password Storage/Transmission:** If stored in plaintext or transmitted without encryption, attackers can steal them.

• Social Engineering Attack on Passwords:

- Involves tricking people into revealing their passwords instead of directly attacking the system.
- Examples: Phishing emails, fake login pages, phone calls pretending to be IT staff.
- Defense: User awareness, 2FA, avoiding suspicious requests.

2. Classification of Password Attacks

Password attacks are generally divided into two broad categories:

• 1. Active Attacks (Online Attacks):

Direct interaction with the authentication system.

Types:

- Brute Force Attack: Trying all possible passwords.
- Dictionary Attack: Using lists of common passwords.
- Credential Stuffing: Using leaked passwords from other sites.
- **Password Guessing:** Based on user info (birthday, pet's name).

• 2. Passive Attacks (Offline Attacks):

- Attacker gains hashed/encrypted password file, then attempts cracking offline.
- Types:

- Rainbow Table Attack: Pre-computed hash dictionary.
- Hash Cracking: Using GPU power to compute hashes.
- **Phishing/Keylogging:** Stealing passwords silently.

• Mitigation:

 Strong password policies, password hashing (bcrypt, Argon2), salting, 2FA/MFA, monitoring login attempts.

Topic 12: Security at the Application Layer – PGP & S/MIME

1. Define PGP (Pretty Good Privacy)

• **Definition:** PGP is an encryption program developed by Phil Zimmermann in 1991 for secure email communication.

• How It Works:

- Combines symmetric encryption (for fast message encryption) with asymmetric encryption (for secure key exchange).
- Uses digital signatures for authentication and non-repudiation.

Features:

- Provides confidentiality, integrity, and authentication.
- Uses hybrid cryptography:
 - Symmetric (AES, IDEA, 3DES) → encrypts actual message.
 - Asymmetric (RSA, ECC) → encrypts the session key.
- Includes **compression** to reduce data size and improve performance.
- Applications: Email security, file encryption, data integrity.

2. MIME Attack on Diffie-Hellman Key Exchange Process

- MIME (Multipurpose Internet Mail Extensions): Extends email format to support text, images, attachments.
- Attack Scenario:

- In a Diffie—Hellman key exchange, an attacker can intercept the key negotiation between sender and receiver.
- MIME-based attacks may involve inserting malicious attachments or altering content during exchange.
- If email applications don't verify digital signatures, attackers can replace legitimate MIME parts with harmful ones.

Defense:

- Use signed MIME (S/MIME) with digital signatures.
- o Implement authenticity checks.

3. What is MIME? List the Limitations of SMTP/RFC 822

- MIME (Multipurpose Internet Mail Extensions): Standard for formatting non-text data in emails (audio, video, images, applications).
- Why Needed: SMTP and RFC 822 were text-only protocols.
- Limitations of SMTP/RFC 822:
 - 1. Supports only 7-bit ASCII text (no binary data like images or files).
 - 2. No encryption or authentication support.
 - 3. Limited attachment capability.
 - 4. Not designed for modern security requirements.

MIME Solves These By:

- Encoding binary files (Base64).
- o Adding headers for content type, transfer encoding.
- Supporting multipart messages.

4. Why is E-mail Compatibility Function in PGP Needed?

- Problem: Traditional email systems often alter characters (extra spaces, line breaks, encoding).
- Solution in PGP:
 - Uses radix-64 encoding (Base64) to convert binary output of encryption into text-only format that is safe for email transport.
 - Ensures encrypted messages survive email transmission without corruption.
- Benefit: Makes PGP-encrypted emails universally compatible across email systems.

Google Search

Topic 13: Security at the Transport Layer – SSL &

1. Explain Diffie-Hellman Key Exchange Algorithm

• **Definition:** A method for two parties to securely generate a shared secret key over an insecure channel without sending the key directly.

• Steps:

- 1. Choose a large prime number (q) and a primitive root (a).
- 2. Alice picks private key (X_A), computes public key ($Y_A = a^{X_A} \pmod{q}$).
- 3. Bob picks private key (X_B), computes public key ($Y_B = a^{X_B} \mod q$).
- 4. Exchange public keys.
- 5. Alice computes shared key: ($K = Y_B^{X_A} \mod q$).
- 6. Bob computes shared key: ($K = Y_A^{X_B} \mod q$).
- o Both result in the same key due to modular arithmetic.
- Security Basis: Discrete Logarithm Problem (hard to compute (X) from (a^X \mod q)).

2. What is a Socket? Describe SSL (Secure Socket Layer) Algorithm

- Socket: Endpoint for sending/receiving data between two processes across a network (identified by IP + port).
- SSL Algorithm:
 - **Record Layer:** Provides fragmentation, compression, encryption.
 - Handshake Layer: Establishes secure session by authenticating server, optionally client.
 - Handshake Steps:
 - 1. ClientHello → supported ciphers, random nonce.
 - 2. ServerHello → chosen cipher, server certificate.
 - 3. Key Exchange → Diffie-Hellman / RSA used.
 - 4. Session Keys derived → secure communication begins.
 - **Security:** Provides confidentiality, authentication, and integrity.

3. Benefits of Using SSL (and TLS)

- Confidentiality: Encryption prevents eavesdropping.
- Integrity: Message authentication codes ensure no tampering.

- Authentication: Certificates verify server (and client if needed).
- Trust: Users trust websites with HTTPS (SSL/TLS enabled).
- Protection Against Attacks: Helps prevent MITM, replay attacks, and session hijacking.
- Use Cases: HTTPS, online banking, VPNs, secure email.

4. Diffie-Hellman Key Exchange Example (a=5, q=11, X_A=2, X_B=3)

- Given: (a=5, q=11, X_A=2, X_B=3).
- 1. Compute Alice's public key: $(Y_A = a^{X_A} \mod q = 5^2 \mod 11 = 25 \mod 11 = 3)$.
- 2. Compute Bob's public key: $(Y_B = a^{X_B} \mod q = 5^3 \mod 11 = 125 \mod 11 = 4)$.
- 3. Shared secret key:
 - Alice: $(K = Y_B^{X_A} \mod q = 4^2 \mod 11 = 16 \mod 11 = 5)$.

5. Diffie-Hellman Example (q=71, a=7, X_A=5, X_B=12)

- Given: (q=71, a=7, X_A=5, X_B=12).
- 1. Alice's public key: $(Y_A = 7^5 \mod 71 = 16807 \mod 71 = 61)$.
- 2. Bob's public key: $(Y_B = 7^{12} \mod 71)$.
 - \circ Compute: $(7^{12} \mod 71 = 19)$.
- 3. Shared secret key:
 - Alice: $(K = Y_B^{X_A} \mod 71 = 19^5 \mod 71 = 6)$.
 - Bob: (K = Y_A^{X_B} \mod 71 = 61^{12} \mod 71 = 6). ✓ Shared secret key = 6.

6. SSL Handshake Protocol

- **Goal:** Establish secure session keys before transmitting data.
- Steps:
 - 1. ClientHello: Lists supported ciphers, random value.
 - 2. **ServerHello:** Selects cipher suite, sends certificate.
 - 3. **Key Exchange:** Server proves identity, exchange of session key (RSA or DH).
 - 4. Finished Messages: Both sides verify handshake success.

• **Result:** Session established with symmetric keys for fast encryption.

7. SSL Connection State Parameters

SSL connection maintains several security parameters:

- Client Random & Server Random: Random numbers exchanged for session key generation.
- Session ID: Identifies session uniquely.
- Cipher Suite: Defines algorithms used (AES, 3DES, SHA).
- Master Secret: Generated during handshake.
- MAC Secrets: Used for message integrity.
- **Keys:** Separate keys for encryption/decryption in both directions.

8. Secure Shell (SSH) Protocol

- **Definition:** A cryptographic network protocol for secure remote login and file transfer.
- Functions:
 - Encrypts traffic (confidentiality).
 - Authenticates server & user (public key authentication).
 - o Protects against MITM & replay attacks.
- Use Cases:
 - Remote login to servers (Linux).
 - Secure file transfer (SCP, SFTP).
 - Port forwarding, tunneling.

Topic 14: Security at the Network Layer – IPSec

1. What do you mean by Security Association (SA)? Specify its Parameters

- Security Association (SA):
 - A set of security parameters agreed upon between two communicating parties to establish a secure channel in IPSec.
 - Each SA is **unidirectional** (one for inbound, one for outbound).
- Parameters that Identify an SA:
 - 1. **SPI (Security Parameter Index):** Unique identifier in packet headers.

- 2. **Destination IP Address:** Identifies peer system.
- 3. **Security Protocol Identifier:** Specifies if AH (Authentication Header) or ESP (Encapsulating Security Payload) is used.
- Other Parameters (inside SA):
 - o Cryptographic algorithms (AES, 3DES).
 - Authentication algorithms (HMAC-SHA).
 - Lifetime of SA.

2. Explain IPSec ESP (Encapsulating Security Payload) Format

- ESP (Encapsulating Security Payload): Provides confidentiality, integrity, authentication, and optional replay protection.
- ESP Packet Format:
 - 1. Security Parameters Index (SPI): Identifies SA.
 - 2. **Sequence Number:** Protects against replay attacks.
 - 3. Payload Data: Encrypted message (AES, 3DES).
 - 4. Padding: Align data to block size.
 - 5. **Next Header:** Identifies type of data in payload (e.g., TCP, UDP).
 - 6. Authentication Data (Optional): Provides data integrity.
- Advantage: Unlike AH (Authentication Header), ESP can encrypt the payload.

3. Applications and Benefits of IPSec

- Applications:
 - Virtual Private Networks (VPNs).
 - o Secure site-to-site connections.
 - Remote access to corporate networks.
 - Secure email & VolP.
- Benefits:
 - Provides end-to-end security at the network layer.
 - o Protects against spoofing, replay, eavesdropping.
 - Transparent to applications → no need to modify software.
 - Supports **tunnel mode** (entire packet encrypted) and **transport mode** (payload encrypted).

4. Tunnel Mode vs. Transport Mode of IPSec

• Transport Mode:

- Only the payload of the IP packet is encrypted/authenticated.
- Header remains visible.
- Used for end-to-end communication (host-to-host).

Tunnel Mode:

- Entire IP packet (header + payload) encrypted.
- A new IP header is added.
- Used for VPNs, gateway-to-gateway communication.

• Summary:

- Transport → End-to-end security.
- Tunnel → Gateway-to-gateway, secure tunneling.

5. IPSec Protocol for Authentication and Data Integrity

• IPSec provides two main protocols:

1. AH (Authentication Header):

- Provides authentication, integrity, and replay protection.
- Does not provide encryption (no confidentiality).
- Protects entire packet except fields that change in transit.

2. ESP (Encapsulating Security Payload):

- Provides authentication, integrity, confidentiality.
- More widely used because it supports encryption.
- Data Integrity: Achieved using HMAC (Hash-based Message Authentication Code) with SHA-1 or SHA-256.
- **Authentication:** Ensures the packet is from a legitimate source.

Topic 15: System Security

1. Define Intrusion and Methods of Intrusion Detection

- **Intrusion:** Any unauthorized attempt to access, manipulate, or disable a computer system, network, or data.
- Types of Intrusions:

- Unauthorized login attempts.
- Malware infections.
- o Denial of Service (DoS) attacks.
- Exploiting software vulnerabilities.
- Intrusion Detection Methods (IDS Intrusion Detection Systems):
 - 1. Signature-Based IDS: Detects known attack patterns (like antivirus).
 - 2. Anomaly-Based IDS: Detects deviations from normal behavior (useful for zero-day attacks).
 - 3. Host-Based IDS (HIDS): Monitors activities on a single host (e.g., log files, file integrity).
 - 4. Network-Based IDS (NIDS): Monitors network traffic (packet inspection).

2. Firewall - Definition, Merits, and Demerits

• **Definition:** A firewall is a security system (hardware, software, or both) that monitors and controls incoming/outgoing network traffic based on security rules.

Merits (Advantages):

- Protects internal network from external threats.
- Blocks unauthorized access.
- Can log and monitor traffic.
- o Implements access control policies.

• Demerits (Disadvantages):

- Cannot protect against internal threats (if attacker is inside).
- o Cannot prevent attacks via allowed applications (e.g., malware in email).
- Cannot detect encrypted malicious traffic.

3. Worms and Digital Immune System

- Worm: A self-replicating malicious program that spreads across networks without human action.
 - o Example: Code Red, SQL Slammer.
 - Can cause bandwidth exhaustion and system crashes.

Digital Immune System (DIS):

- A defense model inspired by the biological immune system.
- o Detects new, unknown viruses → creates a defense → distributes updates across systems.
- Example: Symantec used this concept to automatically detect and counter new malware.

O Google Search

4. Firewall & Its Limitations – Why Corporate Houses Use Multiple Firewalls

Firewall Limitations:

- Cannot protect against social engineering attacks.
- Does not stop insider attacks.
- o Limited visibility into encrypted traffic.
- o May not detect zero-day exploits.

Why Multiple Firewalls?

- **Defense-in-Depth:** Multiple firewalls at different layers (perimeter, internal).
- **Segmentation:** Separate sensitive servers (finance, HR) from rest of the network.
- High Availability: Redundancy for failover.
- Layered Security: Different vendors for different strengths.

5. How to Ensure Router Security

Routers are critical as entry/exit points for networks. Weak router security = vulnerable network.

Methods to Secure Routers:

- o Change default admin usernames/passwords.
- o Disable unused ports/services.
- Use strong encryption for management (SSH, not Telnet).
- Apply firmware updates regularly.
- Implement access control lists (ACLs).
- Enable firewall features in routers.
- Monitor router logs and traffic.
- Enterprise Security: Use IDS/IPS integrated with routers for enhanced protection.

Topic 16: Random Number Generator (RNG)

1. What is a Pseudorandom Generator (PRNG)? Give an Example Describing How it Works

• Random Numbers in Cryptography:

- Essential for key generation, initialization vectors (IVs), session keys, nonces.
- If randomness is predictable → cryptosystem becomes weak.

True Random Number Generator (TRNG):

- Uses physical sources (radioactive decay, thermal noise, mouse movements).
- Unpredictable but harder to implement.

Pseudorandom Number Generator (PRNG):

- Uses mathematical algorithms to generate sequences of numbers that "appear random."
- Deterministic: If seed is known, the sequence is reproducible.
- Used when high speed and efficiency are required.

Properties of PRNG in Cryptography:

- Must pass statistical randomness tests.
- Must be unpredictable (next number cannot be guessed).
- Should have a long period before repeating.

• Example – Linear Congruential Generator (LCG):

- Formula: $(X_{n+1} = (aX_n + c) \mod m)$.
- o Parameters (a, c, m) define generator behavior.
- If chosen well, produces long sequence before repeating.
- **Weakness:** Predictable once some outputs are known → not secure for cryptography.

• Cryptographically Secure PRNG (CSPRNG):

- o Example: Fortuna, Yarrow, ANSI X9.17.
- Based on secure hash functions or block ciphers.
- Strong enough for key generation in AES, RSA, TLS.

Topic 17: Secured Electronic Transaction (SET)

1. Define SET. Write Down the Features of SET

• Definition:

- SET (Secure Electronic Transaction) is a security protocol developed by VISA and MasterCard (1996) for securing online credit card payments.
- o It ensures that credit card details are transmitted safely over insecure networks like the Internet.
- Uses digital signatures, digital certificates, and encryption.

Features of SET:

- 1. **Confidentiality:** Card details are encrypted (RSA + DES/AES).
- 2. **Integrity:** Digital signatures protect message from tampering.

3. Authentication:

• Cardholder and merchant identities verified using **digital certificates** (X.509).

4. Dual Signature:

- Splits order info and payment info → merchant cannot see card details, bank cannot see order details.
- 5. **Interoperability:** Based on open standards (X.509, RSA).
- 6. **Non-repudiation:** Both merchant and customer cannot deny their actions.
- 7. **Scalability:** Works globally for e-commerce.

2. Steps Involved in a SET Transaction

A SET transaction has multiple parties: **Customer, Merchant, Payment Gateway, Bank, and Certificate Authority (CA).**

• Step 1: Initialization

Customer and merchant obtain digital certificates from CA.

• Step 2: Purchase Request

- Customer selects goods/services online.
- Customer creates two messages:
 - 1. Order Information (OI) for merchant.
 - 2. Payment Information (PI) for bank.
- A **Dual Signature** is created to bind OI and PI together.

• Step 3: Merchant Processing

- Merchant verifies customer's certificate and dual signature.
- Merchant forwards PI securely to payment gateway/bank.

• Step 4: Authorization

- Payment gateway requests bank to authorize payment.
- Bank checks card validity, balance, etc.
- Authorization response sent back.

• Step 5: Capture

- Merchant requests payment gateway to capture funds.
- Payment is transferred from customer's bank to merchant's account.

• Step 6: Completion

- Merchant ships goods/services.
- Both merchant and customer get receipts.

• Security Highlight:

- o Merchant never sees card details.
- o Bank never sees order details.

1. Mention the Weakness of Electronic Code Book (ECB) Mode

- Electronic Code Book (ECB) Mode:
 - Simplest block cipher mode of operation.
 - Message divided into fixed-size blocks (e.g., 128 bits for AES).
 - Each block encrypted **independently** using the same key: [C_i = E_K(P_i)]
 - Where (P_i) = plaintext block, (C_i) = ciphertext block.

Weaknesses:

- 1. **Pattern Leakage:** Identical plaintext blocks → identical ciphertext blocks.
 - Example: Encrypting an image with ECB preserves visible patterns.
- 2. **No Diffusion:** Changing one block affects only that block (no chaining).
- 3. **Replay Vulnerability:** Same plaintext always produces same ciphertext → attacker can replay captured ciphertexts.
- 4. Not Suitable for Long Data: Repeated messages expose structure.

Visual Example:

 Encrypting a bitmap image (e.g., Linux Tux Penguin) with ECB → encrypted image still shows penguin outline because repeated pixel patterns remain visible.

Why Not Used in Practice:

- o Insecure for most applications.
- Modern systems prefer CBC, CFB, OFB, or CTR modes.

Google Search

1. What is Sandbox?

- **Definition:** A **sandbox** is a controlled environment where software can run in isolation from the main system.
- **Purpose:** Prevents malicious or untrusted code from harming the system.
- Example:
 - Browser sandboxes (Chrome/Edge run each tab in isolated processes).
 - Mobile app sandboxes (Android/iOS apps run with restricted permissions).
- Benefit: Protects against malware, zero-day exploits, and unsafe scripts.

2. What are Sandbox Environments?

- A **sandbox environment** is a virtual test setup where new programs, code, or files are executed safely.
- Types:
 - o Software Sandbox: Applications run with limited system access.
 - Hardware Sandbox: Isolated hardware environment.
 - Cloud Sandbox: Online sandbox for testing files/emails for malware.
- **Use Case:** Security researchers analyze suspicious files in sandbox before allowing them on a live network.

3. Benefits of Sandboxing

- Protects production systems from malicious or buggy software.
- Prevents malware from spreading across networks.
- Provides safe environment for testing software updates.
- Helps detect zero-day exploits.
- Allows IT admins to analyze unknown files without risk.

4. Describe Intruder in Network Security

- **Intruder:** An entity (human or malicious software) that attempts to gain unauthorized access to computer systems.
- Types:
 - Masquerader: Outsider who pretends to be a legitimate user.
 - Misfeasor: Legitimate user misusing privileges.

- Clandestine User: Attacker who hides their identity/activities.
- Intruder Goals: Data theft, denial of service, spreading malware.
- **Defense:** Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), firewalls, logging, and monitoring.

5. Denial-of-Service (DoS) and Distributed DoS (DDoS) Attacks

- DoS Attack: Overwhelms a server or network with traffic, making it unavailable.
 - Example: Flooding a web server with fake requests.
- DDoS Attack: Multiple compromised computers (botnets) launch a coordinated attack.
 - Example: Mirai Botnet DDoS (2016) took down Twitter, Netflix, GitHub.

Types of DDoS Attacks:

- Volume-Based: Flood with high traffic (UDP flood, ICMP flood).
- Protocol Attacks: Exploit weaknesses in protocols (SYN flood, Ping of Death).
- Application Layer Attacks: Target web applications (HTTP flood).

Defenses:

- Firewalls & rate limiting.
- Load balancing & CDNs.
- Specialized DDoS protection services (Cloudflare, Akamai).

6. VPN (Virtual Private Network) & Network Security Policy/Management

- VPN (Virtual Private Network):
 - Creates an encrypted tunnel over a public network (like the Internet).
 - Ensures confidentiality, integrity, authentication of data.
 - Used by remote workers, businesses, and for secure browsing.

Network Security Policy:

- A set of rules defining how data, resources, and services are protected.
- Covers access control, password rules, acceptable use, incident response.

• Network Security Management:

- Involves monitoring, configuring firewalls, IDS/IPS, patch management, and compliance.
- Ensures security policy is enforced consistently.

Topic 20: Short Notes

1. S/MIME (Secure/Multipurpose Internet Mail Extensions)

- **Definition:** Standard for secure email communication, built on top of MIME.
- Features:
 - Provides **confidentiality** (encryption with RSA/AES).
 - Provides authentication & integrity (digital signatures).
 - Uses X.509 certificates for trust.
- Applications: Secure email in Outlook, Thunderbird, Gmail (corporate).
- Benefit: End-to-end encryption of email messages.

2. Email Security

- Threats: Phishing, spam, malware attachments, spoofing.
- Techniques for Security:
 - Encryption (PGP, S/MIME).
 - o Digital signatures for authenticity.
 - Spam filters, antivirus.
 - Authentication protocols: SPF, DKIM, DMARC.
- Goal: Protect confidentiality, integrity, and authenticity of emails.

3. ESP (Encapsulating Security Payload – IPSec)

- **Function:** Part of IPSec protocol suite.
- Provides: Confidentiality (encryption), integrity, authentication, anti-replay protection.
- Packet Fields: SPI, Sequence Number, Payload Data, Padding, Next Header, Authentication Data.
- Advantage: Protects message content from eavesdropping.

4. Steganography

- **Definition:** Hiding secret information inside non-secret data (images, audio, video).
- Example: Text hidden in the least significant bits (LSB) of an image.

- **Difference from Cryptography:** Cryptography scrambles content, steganography hides content's existence.
- Use Cases: Covert communication, digital watermarking.

5. ECC (Elliptic Curve Cryptography)

- **Definition:** Asymmetric cryptography using elliptic curves over finite fields.
- Advantages:
 - Strong security with small key sizes (256-bit ECC ≈ 3072-bit RSA).
 - Efficient for mobile, IoT.
- Applications: SSL/TLS, cryptocurrencies (Bitcoin, Ethereum), secure messaging.

6. Digital Immune System (DIS)

- Concept: Inspired by biological immune systems.
- Working:
 - o Detects unknown malware → creates signature → distributes defense across systems.
- Example: Antivirus companies (Symantec) use this model.
- Benefit: Fast, automated malware response.

7. Diffie-Hellman Key Exchange

- Secure key exchange protocol over insecure channels.
- Based on discrete logarithm problem.
- Used in SSL/TLS, VPNs.
- Vulnerable to **MITM attack** if no authentication.

8. Stream Cipher vs. Block Cipher

- Stream Cipher: Encrypts bit/byte at a time (RC4). Fast, lightweight.
- Block Cipher: Encrypts fixed-size blocks (AES, DES). Stronger but slower.
- Comparison: Stream better for real-time, Block better for file encryption.
- **@** Google Search

9. Digital Signature Standard (DSS)

- NIST Standard (1994).
- Specifies algorithms for digital signatures: DSA, RSA, ECDSA.
- Provides integrity, authenticity, non-repudiation.
- Used in US government systems.

10. Security Attacks

- Active Attacks: Modification, fabrication, DoS.
- Passive Attacks: Eavesdropping, traffic analysis.
- Goal of Attacker: Break confidentiality, integrity, availability.

11. UNIX Password Scheme

- UNIX systems: Store encrypted passwords in /etc/shadow.
- Uses salted hashing to prevent dictionary attacks.
- Modern systems use **bcrypt**, **SHA-512** for stronger protection.
- Weak if short/guessable passwords used.

12. SSL (Secure Socket Layer)

- Transport layer security protocol.
- Provides encryption, authentication, and integrity.
- Replaced by TLS but still commonly called "SSL."
- Used in HTTPS (websites with padlock

).

13. Hash Function

- Converts arbitrary input → fixed-size digest.
- Properties: Pre-image resistance, collision resistance, avalanche effect.
- Examples: MD5, SHA-256, SHA-512.
- Used in password storage, digital signatures, blockchain.

14. IPSec ESP Format

• Already covered in **Topic 14** (Encapsulating Security Payload).

• Key fields: SPI, Sequence Number, Payload Data, Authentication Data.

15. Cryptanalysis

- The science of breaking ciphers and recovering plaintext/keys.
- Types:
 - Ciphertext-only attack.
 - Known-plaintext attack.
 - Chosen-plaintext attack.
 - o Differential & Linear Cryptanalysis.

16. Differential Cryptanalysis

- A type of cryptanalysis technique analyzing differences in input vs. output.
- Applied to block ciphers (e.g., DES).
- Requires large numbers of chosen plaintexts.
- Goal: Recover secret key.

17. PGP (Pretty Good Privacy)

- Already covered in **Topic 12**.
- Hybrid encryption for secure email.
- Uses symmetric + asymmetric cryptography + compression.

18. SET (Secure Electronic Transaction)

- Already covered in **Topic 17**.
- Protocol for secure online payments.

19. Feistel Cipher

- Symmetric cipher structure (used in DES).
- Splits block into two halves → applies substitution & permutation in rounds.
- Same design works for both encryption & decryption.

20. RC4 Algorithm

- A stream cipher designed by Ron Rivest (RSA Security).
- Generates pseudorandom keystream XORed with plaintext.
- Used in early SSL/TLS and WEP (now insecure).
- Weakness: Key scheduling vulnerabilities.

21. PRNG (Pseudorandom Number Generator)

- Already covered in **Topic 16**.
- Deterministic algorithm generating random-like sequences.
- Example: Linear Congruential Generator (LCG).
- Cryptographically secure PRNGs needed for keys.

22. Wire Pool

- A mechanism used in cryptographically secure PRNGs to collect entropy (randomness) from multiple sources.
- Helps improve unpredictability of random numbers.
- Example: Used in PGP's random number generation.

23. X.509 Architecture Format

- Standard for **digital certificates** used in PKI.
- Includes: Version, Serial Number, Issuer, Validity, Subject, Public Key, Signature.
- Used in SSL/TLS, email security, VPNs.

24. PKI (Public Key Infrastructure)

- A framework for managing digital certificates and public/private keys.
- Components: CA, RA (Registration Authority), CRL, OCSP.
- Provides authentication, confidentiality, integrity, non-repudiation.
- Basis of HTTPS, VPNs, digital signatures.

25. Generic Encryption

- Refers to a **general model of encryption** → plaintext + key → encryption algorithm → ciphertext.
- Covers both symmetric and asymmetric methods.
- Used as a conceptual framework in security studies.

26. S-Box (Substitution Box)

- A component of block ciphers like DES and AES.
- Provides non-linearity (confusion) by mapping input bits to output bits.
- Example: DES uses 8 S-boxes in each round.
- Essential for resistance against linear/differential cryptanalysis.

27. 9-Box

- A variation of substitution/permutation structure in cryptography.
- Sometimes used as an educational model for demonstrating simple ciphers.
- Provides basic confusion and diffusion properties.
- Less common in practical systems compared to S-boxes.

